EPREUVES ECRITES

TEXTE DE L'EPREUVE
DE MATHEMATIQUES GENERALES

Durée : 6 heures

Les dessins demandés dans le texte seront exécutés sur papier millimétrique.

Pour cette épreuve, le problème a été choisi d'une approche assez facile. Les candidats sont prévenus qu'entreront dans l'appréciation des copies le soin apporté à la présentation, la clarté et la précision de la rédaction. Ils sont en particulier invités :

— d'une part à respecter les notations fixées par le texte ;
— d'autre part à assortir leur rédaction de figures soignées, soit qu'elles soient explicitement demandées dans l'énoncé, soit que, les ayant aidés à réaliser une situation, elles leur permettent de s'exprimer plus clairement, étant bien entendu qu'une figure ne saurait se substituer à un raisonnement rigoureux.

Les différentes questions du problème, de difficultés inégales, ont une indépendance relative. Aucun ordre n'est imposé pour les résoudre. À condition de l'indiquer clairement, les candidats pourront utiliser pour la résolution d'une question des résultats fournis par l'énoncé d'une question précédente, même s'ils n'ont pu la résoudre.

PARTIE 0. — Notations et définitions

0.1.

Pour A et B parties d’un même ensemble, on pose

\[A \setminus B = \{ a \in A, a \notin B \} \]

On note \(\mathbb{Z} \) l’anneau des entiers rationnels, \(\mathbb{R} \) le corps des réels, \(C \) celui des complexes. Si \(A \) est une partie minorée de \(\mathbb{R} \), sa borne inférieure est désignée par \(\inf A \).

On considère l'espace métrique \(\mathbb{R}^2 \) obtenu en munissant \(\mathbb{R} \times \mathbb{R} \) de son produit scalaire canonique noté \((.,.) \), la norme associée étant notée \(\| \cdot \| \) et la distance associée \(d(.,.) \). Deux vecteurs (ou points) \(\xi = (x,y) \) et \(\xi' = (x',y') \) ont pour déterminant dans la base canonique le réel \(xy' - yx' \) noté \(\det(\xi,\xi') \).

La lettre \(\varnothing \) désigne le sous-ensemble de \(\mathbb{R}^2 \) défini par :

\[\varnothing = \{ (x,y) ; \ 0 \leq x \leq \frac{1}{2}, \ y \geq 0, \ x^2 + y^2 \geq 1 \} \]

On convient de noter :

\[0 = (0,0) \quad u = (1,0) \quad v = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \quad w = (0,1) \]

0.2.

On dira qu'une partie \(\Lambda \) de \(\mathbb{R}^2 \) est un réseau, s'il existe au moins une base \(\{ \xi, \eta \} \) de \(\mathbb{R}^2 \) telle que l'on ait :

\[\Lambda = \mathbb{Z} \xi + \mathbb{Z} \eta = \{ p \xi + q \eta ; (p,q) \in \mathbb{Z}^2 \} \]
Tout système \(\{ \vec{z}', \eta' \} \), vérifiant \(\Lambda = Z \vec{z}' + Z \eta' \), est dit une base du réseau. On note respectivement :

\(\Lambda_s \) le réseau dont une base est \(\{ u, v \} \);
\(\Lambda_e \) le réseau dont une base est \(\{ u, w \} \);
\(\Lambda_r^\theta \) le réseau dont une base est \(\{ u, \theta w \} \) avec \(\theta \geq 1 \).

Plus généralement un réseau est dit réduit, s'il admet une base de la forme \(\{ u, j \} \) avec \(j \in \mathcal{O} \).

Deux réseaux sont dits isométriques (resp. semblables) s'il existe une isométrie (resp. similitude directe ou indirecte) de \(\mathbb{R}^2 \) transformant l'un en l'autre. Un réseau semblable à \(\Lambda_s \) est dit équilatéral ; un réseau semblable à \(\Lambda_e \) (resp. à un \(\Lambda_r^\theta \)) est dit carré (resp. rectangulaire).

0.3.

Pour un réseau quelconque \(\Lambda \) on appelle :

- \(\text{carcan de } \Lambda \) le nombre réel \(\text{carr } \Lambda = \inf \{ \| \lambda \| ; \lambda \in \Lambda \setminus 0 \} \);
- \(\text{alvéole fondamental de } \Lambda \) l'ensemble
 \[\Lambda(\Lambda) = \{ \vec{z} \in \mathbb{R}^2 ; \forall \lambda \in \Lambda , d(0, \vec{z}) \leq d(\lambda, \vec{z}) \} \] .

On introduit aussi

\[\Lambda' = \{ \vec{z} \in \mathbb{R}^2 ; \forall \lambda \in \Lambda \setminus 0 , d(0, \vec{z}) < d(\lambda, \vec{z}) \} . \]

Dans la suite du texte, on écrira en abrégé \(\Lambda_b \) et \(\Lambda' \) pour \(\Lambda(\Lambda) \) et \(\Lambda(\Lambda') \) ; on posera aussi, pour tout \(\gamma \) de \(\mathbb{R}^2 \),

\[\Lambda_\gamma = \{ \vec{z} + \gamma ; \vec{z} \in \Lambda_b \} \text{ et } \Lambda'_\gamma = \{ \vec{z} + \gamma ; \vec{z} \in \Lambda' \} . \]

0.4.

Le stabilisateur d'un élément \(x \) d'un ensemble \(X \), dans lequel opère un groupe \(G \), est : \(G_x = \{ g \in G ; g(x) = x \} \).

PARTIE I. — Réseaux, classification

I.1.

Dessiner \(\mathcal{O} \).

Sur des figures séparées :

- dessiner \(\Lambda_s \) ; déterminer et dessiner \(\Lambda_b(\Lambda_s) \) ; trouver \(\text{carr } \Lambda_s \) ;
- dessiner un \(\Lambda_r^\theta \) ; déterminer et dessiner \(\Lambda_b(\Lambda_r^\theta) \) ; trouver \(\text{carr } \Lambda_r^\theta \) et \(\text{carr } \Lambda_e \).

I.2.

Soit \(\mathcal{O} \) et \(\mathcal{O}' \) deux bases d'un réseau \(\Lambda \). Démontrer que la matrice de passage de \(\mathcal{O} \) à \(\mathcal{O}' \) est une matrice \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) à éléments dans \(\mathbb{Z} \) vérifiant \(|ad - bc| = 1 \). Énoncer une réciproque. Donner des exemples de telles matrices sans élément nul.

Établir que le réel \(: = \text{detr } \mathcal{O} \) dépend seulement du réseau \(\Lambda \) et non du choix de sa base ; on le note aire \(\Lambda \). Calculer aire \(\Lambda_r^\theta \) et aire \(\Lambda_e \).

Lorsque \(\Lambda \) est réduit, démontrer que, si \(\{ u, j \} \) et \(\{ u, j' \} \) sont deux de ses bases avec \(j \) et \(j' \) éléments de \(\mathcal{O} \), on a nécessairement \(j = j' \) ; on note \(j(\Lambda) \) le vecteur ainsi canoniquement attaché au réseau réduit \(\Lambda \).
I.3.

Pour tout Λ démontrer que $\arctan \Lambda$ est strictement positif et que les points de Λ sont isolés uniformément par des boules de rayon $\frac{\arctan \Lambda}{2}$.

Prouver que le nombre $m(\Lambda)$ des éléments λ de Λ satisfaisant à $\| \lambda \| = \arctan \Lambda$ est non nul et fini.

I.4.

Soit $\{ x, \beta \}$ une base de \mathbb{R}^2 vérifiant les conditions :

\[
\begin{align*}
& (K) \quad \| x \| \leq \| \beta \| \\
& 0 \leq (x | \beta) \leq \frac{1}{2} \| x \|^2
\end{align*}
\]

Démontrer les résultats suivants :

(i) $\forall (p, q) \in \mathbb{Z}^2 \setminus (0, 0)$, $\| px + q \beta \| \geq \| x \|^2$.

(ii) $\forall p \in \mathbb{Z}$, $\forall q \in \mathbb{Z} \setminus 0$, $\| px + q \beta \| \geq \| \beta \|^2$.

(iii) si $p \in \mathbb{Z}$, $q \in \mathbb{Z} \setminus 0$, $(p, q) \neq (0, 1)$, $(p, q) \neq (0, -1)$, alors $\| px + q \beta \|^2 \leq \| x \|^2 + \| \beta \|^2$ entraîne $\| px - q \beta \|^2 = \| \beta - x \|^2$.

I.5.

Prouver que, si ξ est un vecteur de Λ vérifiant $\| \xi \| = \arctan \Lambda$, il existe η tel que $\{ \xi, \eta \}$ soit une base de Λ.

Démontrer que tout réseau Λ possède une base $\{ x, \beta \}$ vérifiant (K).

I.6.

Établir que tout réseau est semblable à un réseau réduit et à un seul.

A tout réseau Λ on associe canoniquement, et on note encore $j(\Lambda)$ le vecteur de ω canoniquement attaché dans I.2, au réseau réduit semblable à Λ. Où est $j(\Lambda)$ s'il Λ est équilatéral, rectangulaire ou carré?

Discuter $m(\Lambda)$ suivant la position de $j(\Lambda)$ dans ω.

Établir l'inégalité : aire $\Lambda \geq \frac{\sqrt{3}}{2} (\arctan \Lambda)^2$ et discuter le cas de l'égalité.

PARTIE II. — Isométries d'un réseau, tore plat

II.1.

Démontrer : $\mathbb{R}^2 = \bigcup_{\lambda \in \Lambda} \mathcal{A}_\lambda$ (voir O.3a)

A-t-on une partition?

Prouver que \mathcal{A} est un hexagone convexe, sauf si Λ est rectangulaire, auquel cas \mathcal{A} est un rectangle. Dessiner le cas général. Démontrer que \mathcal{A}' est l'intérieur de \mathcal{A} et que \mathcal{A}' est partout dense dans \mathcal{A}.

II.2.

On note Γ le groupe Isom Λ des isométries de \mathbb{R}^2 conservant globalement Λ et $T = \text{Trans} \Lambda$ le sous-groupe de Γ constitué par le groupe additif Λ opérant sur \mathbb{R}^2, c'est-à-dire par les translations $\xi \mapsto \xi + \lambda$ avec $\lambda \in \Lambda$. Démontrer que T est distingué dans Γ, soit Γ le groupe-quotient Γ/T, isomorphe au stabilisateur de 0 dans Γ; démontrer que G est un groupe fini, discuter le nombre de ses éléments et sa structure selon $j(\Lambda)$. Discuter dans G l'équation $s^n = e$, où e est l'élément neutre.
II.3.

Pour une base $\mathcal{B} = \{ \xi, \eta \}$ de \mathbb{R}^2, soit $\mathcal{A}(\mathcal{B})$ l'ensemble des points de \mathbb{R}^2 de la forme $p\xi + q\eta$ avec $(p, q) \in \mathbb{Z}^2$ et $|p| + |q| \leq \frac{1}{2}$, et $\Lambda(\mathcal{B})$ la réunion des images de $\mathcal{A}(\mathcal{B})$ par les translations $p\xi + q\eta$ avec $(p, q) \in \mathbb{Z}^2$ et $p + q$ pair. On choisit $\xi = (1, 0)$ et $\eta = (2, 1)$, et on note \mathcal{K} l'ensemble $\Lambda(\mathcal{B})$ correspondant. La base canonique étant figurée orthonormée (unité de longueur de 4 cm environ), représenter \mathcal{K} par des hachures sur un dessin.

L'ensemble \mathcal{K} est-il stable par le groupe Trans Λ_ξ?

II.4.

Étant donné un réseau Λ, on appelle ici tore plat associé à Λ, et on notera Λ_ξ le groupe-quotient \mathbb{R}^2/Λ du groupe additif de \mathbb{R}^2 par le sous-groupe Λ, c'est-à-dire l'ensemble des classes $\Lambda + \xi$ avec $\xi \in \mathbb{R}^2$. La projection canonique $\mathbb{R}^2 \twoheadrightarrow \Lambda_\xi$ sera notée φ.

Démontrer que pour tout γ de \mathbb{R}^2 la restriction de φ à Λ_ξ (voir O.3) est injective. On notera $\psi_\gamma : \varphi(\Lambda_\xi) \rightarrow \Lambda_\gamma$ l'application inverse de la double restriction de φ. Pour $\Lambda = \Lambda_\xi$, dessiner sur une même figure les deux ensembles ($\varphi \circ \varphi$) (\mathcal{K}) et ($\psi_\gamma \circ \varphi$) ($\mathcal{K}$) où ψ_γ correspond à $\gamma = (0, 0)$ et ψ_γ à $\gamma = \left(\frac{3}{2}, \frac{1}{2}\right)$.

PARTIE III. — Dualité, spectre d'un réseau

III.1.

À un réseau Λ on associe la partie Λ^* de \mathbb{R}^2 définie par :

$$\Lambda^* = \{ \gamma \in \mathbb{R}^2 ; \forall \lambda \in \Lambda, (\eta | \lambda) \in \mathbb{Z} \} .$$

Démontrer que Λ^* est aussi un réseau ; on l'appelle le dual de Λ.

Établir : $(\Lambda^*)^* = \Lambda$ et aire Λ. Aire $\Lambda^* = 1$.

Dessiner sur une même figure Λ_ξ et Λ^*_ξ, où Λ_ξ est le réseau admettant pour base $\left(\frac{4}{5}, 0\right)$ et $\left(1, 1 \right)$.

Démontrer que le dual d'un Λ lui est semblable, c'est-à-dire que l'on a : $j(\Lambda^*) = j(\Lambda)$. La similitude peut-elle toujours être choisie directe?

III.2.

Étant donné un réseau Λ, une fonction $f : \mathbb{R}^2 \rightarrow \mathbb{C}$ est dite Λ-périodique si, pour tout élément ξ de \mathbb{R}^2 et tout élément λ de Λ, on a

$$f(\xi + \lambda) = f(\xi) .$$

A tout élément γ de \mathbb{R}^2, on associe la fonction f_γ définie par

$$\xi \mapsto f_\gamma(\xi) = \exp \left[2i\pi (\xi | \gamma) \right] ;$$

f_γ peut-elle être Λ-périodique?

Pour toute fonction $f : \mathbb{R}^2 \rightarrow \mathbb{C}$ de classe C^2 on pose

$$Df = -\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} ;$$

établir, quel que soit l'élément γ de \mathbb{R}^2,

$$Df_\gamma = 4\pi^2 \| \gamma \|^2 f_\gamma .$$
III.3.

On appelle valeur propre du réseau Λ tout réel μ non nul, tel qu'il existe $\eta \in \Lambda^*$ satisfaisant à : $\mu = 4 \pi^2 \| \eta \|^2$. La multiplicité, notée $m(\mu)$, d'une valeur propre μ est par définition le nombre des éléments γ de Λ^* solutions de $4 \pi^2 \| \eta \|^2 = \mu$. Démontrer que $m(\mu)$ est pair pour tout Λ et pour tout μ.

On appelle spectre de Λ l'ensemble, noté $\text{Spec} \Lambda$, des couples $(\mu, m(\mu))$ où μ parcourt l'ensemble des valeurs propres de Λ.

On note $\mu_1(\Lambda)$ la plus petite valeur propre :

$$\mu_1(\Lambda) = \inf \left\{ 4 \pi^2 \| \eta \|^2 ; \quad \eta \in \Lambda^* \setminus \{0\} \right\}.$$

Établir : aire $\Lambda \cdot \mu_1(\Lambda) \leq \frac{8 \pi^2}{\sqrt{3}}$ et discuter le cas de l'égalité.

III.4.

Déterminer les valeurs propres de Λ_{a}, Λ_{b} et Λ_{c}.

Pour Λ_{a}, calculer l'ordre de multiplicité de chacune des valeurs propres

$$20 \pi^2, 36 \pi^2, 100 \pi^2, 1460 \pi^2.$$

Quel est le P.G.C.D. des $m(\mu)$ relatifs à Λ_{a} ?

Pour Λ_{a} calculer l'ordre de multiplicité de chacune des valeurs propres

$$\frac{16 \pi^2}{3}, \frac{112 \pi^2}{3}, 2128 \pi^2.$$

Que peut-on dire de $m(\mu)$ pour les valeurs propres de Λ_{a} ?

III.5.

Existe-t-il des réseaux dont toutes les valeurs propres vérifient $m(\mu) = 2$?

III.6.

Démontrer que deux réseaux Λ et Λ' ont le même spectre si, et seulement si, ils sont isométriques.

III.7.

Étant donné un réseau Λ, on range ses valeurs propres par ordre croissant : $0 < \mu_1 < \mu_2 < \mu_3 < \ldots$

Démontrer que la série $\sum_i m(\mu_i)e^{-t\mu_i}$ est convergente pour tout réel t strictement positif ; on note $S(t)$ sa somme.

Il pourra être commode d'introduire des alvéoles relatifs à Λ^* et des intégrales doubles d'une fonction $(x, y) \rightarrow g_\gamma(x, y) = e^{-r(x^2 + y^2)}$.

III.8.

Démontrer que $S(t)$ est, quand t tend vers 0 par valeurs positives, un infiniment grand équivalent à $\frac{\text{aire } \Lambda}{4 \pi t}$. On pourra pour cela faire intervenir des intégrales doubles de deux fonctions g_γ.

13